- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
31
- Author / Contributor
- Filter by Author / Creator
-
-
Shim, Byonghyo (4)
-
Kim, Seungnyun (2)
-
Win, Moe Z (2)
-
Wu, Jiao (2)
-
Dai, Linglong (1)
-
Heath, Robert W. (1)
-
Ji, Hyoungju (1)
-
Lee, Byungju (1)
-
Love, David J. (1)
-
Moon, Jihoon (1)
-
Park, Sunho (1)
-
Shen, Wenqian (1)
-
Wang, Zhaocheng (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 1, 2026
-
Kim, Seungnyun; Moon, Jihoon; Wu, Jiao; Shim, Byonghyo; Win, Moe Z (, IEEE Journal on Selected Areas in Communications)
-
Lee, Byungju; Park, Sunho; Love, David J.; Ji, Hyoungju; Shim, Byonghyo (, IEEE Transactions on Communications)
-
Shen, Wenqian; Dai, Linglong; Shim, Byonghyo; Wang, Zhaocheng; Heath, Robert W. (, IEEE Transactions on Communications)Channel feedback is essential in frequency division duplexing (FDD) massive multiple-input multiple-output (MIMO) systems. Unfortunately, prior work on multiuser MIMO has shown that the feedback overhead scales linearly with the number of base station (BS) antennas, which is large in massive MIMO systems. To reduce the feedback overhead, we propose an angle-of-departure (AoD) adaptive subspace codebook for channel feedback in FDD massive MIMO systems. Our key insight is to leverage the observation that path AoDs vary more slowly than the path gains. Within the angle coherence time, by utilizing the constant AoD information, the proposed AoDadaptive subspace codebook is able to quantize the channel vector in a more accurate way. From the performance analysis, we show that the feedback overhead of the proposed codebook only scales linearly with a small number of dominant (path) AoDs instead of the large number of BS antennas. Moreover, we compare the proposed quantized feedback technique using the AoD-adaptive subspace codebook with a comparable analog feedback method. Extensive simulations show that the proposed AoD-adaptive subspace codebook achieves good channel feedback quality, while requiring low overhead.more » « less
An official website of the United States government
